Making Masking Security Proofs Concrete - Or How to Evaluate the Security of Any Leaking Device
نویسندگان
چکیده
We investigate the relationships between theoretical studies of leaking cryptographic devices and concrete security evaluations with standard side-channel attacks. Our contributions are in four parts. First, we connect the formal analysis of the masking countermeasure proposed by Duc et al. (Eurocrypt 2014) with the Eurocrypt 2009 evaluation framework for side-channel key recovery attacks. In particular, we re-state their main proof for the masking countermeasure based on a mutual information metric, which is frequently used in concrete physical security evaluations. Second, we discuss the tightness of the Eurocrypt 2014 bounds based on experimental case studies. This allows us to conjecture a simplified link between the mutual information metric and the success rate of a side-channel adversary, ignoring technical parameters and proof artifacts. Third, we introduce heuristic (yet well-motivated) tools for the evaluation of the masking countermeasure when its independent leakage assumption is not perfectly fulfilled, as it is frequently encountered in practice. Thanks to these tools, we argue that masking with non-independent leakages may provide improved security levels in certain scenarios. Eventually, we consider the tradeoff between measurement complexity and key enumeration in divide-and-conquer side-channel attacks, and show that it can be predicted based on the mutual information metric, by solving a non-linear integer programming problem for which efficient solutions exist. The combination of these observations enables significant reductions of the evaluation costs for certification bodies.
منابع مشابه
Making Masking Security Proofs Concrete
We investigate the relationship between theoretical studies of leaking cryptographic devices and concrete security evaluations with standard side-channel attacks. Our contributions are in four parts. First, we connect the formal analysis of the masking countermeasure proposed by Duc et al. (Eurocrypt 2014) with the Eurocrypt 2009 evaluation framework for side-channel key recovery attacks. In pa...
متن کاملProvably Secure Countermeasures against Side-channel Attacks
Side-channel attacks exploit the fact that the implementations of cryptographic algorithms leak information about the secret key. In power analysis attacks, the observable leakage is the power consumption of the device, which is dependent on the processed data and the performed operations. Masking is a widely used countermeasure to thwart the powerful Differential Power Analysis (DPA) attacks. ...
متن کاملMasking Proofs are Tight (and How to Exploit it in Security Evaluations)
Evaluating the security level of a leaking implementation against side-channel attacks is a challenging task. This is especially true when countermeasures such as masking are implemented since in this case: (i) the amount of measurements to perform a key recovery may become prohibitive for certification laboratories, and (ii) applying optimal (multivariate) attacks may be computationally intens...
متن کاملConversion of Security Proofs from One Leakage Model to Another: A New Issue
To guarantee the security of a cryptographic implementation against Side Channel Attacks, a common approach is to formally prove the security of the corresponding scheme in a model as pertinent as possible. Nowadays, security proofs for masking schemes in the literature are usually conducted for models where only the manipulated data are assumed to leak. However in practice, the leakage is bett...
متن کاملA Mutual Authentication Method for Internet of Things
Today, we are witnessing the expansion of various Internet of Things (IoT) applications and services such as surveillance and health. These services are delivered to users via smart devices anywhere and anytime. Forecasts show that the IoT, which is controlled online in the user environment, will reach 25 billion devices worldwide by 2020. Data security is one of the main concerns in the IoT. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015